xVATrainer is a UI-based machine learning app used for training TTS voice models using video game voices, for use in xVASynth.
全部评测:
好评 (11) - 此软件的 11 篇用户评测中有 100% 为好评。
发行日期:
2022 年 4 月 1 日
开发商:
发行商:
标签

想要将此项目添加至您的愿望单、关注它或标记为已忽略,请先登录

不支持简体中文

本产品尚未对您目前所在的地区语言提供支持。在购买请先行确认目前所支持的语言。

使用 xVATrainer

免费
 

关于这款软件

xVATrainer is the companion app to xVASynth, the AI text-to-speech app using video game voices. xVATrainer is used for creating the voice models for xVASynth, and for curating and pre-processing the datasets used for training these models. Check the nexusmods page description for more details, instructions, and updates. Join the Discord for support, and community advice.

IMPORTANT: The "priors" files NEED to be installed for v3 voice training to be possible. Don't forget to download and install these. This is synthetic data (+ some real data from the NVIDIA HIFI TTS and VCTK datasets) to maintain multi-lingual and voice range capabilities when fine-tuning individual voices, similar to Dreambooth training. Due to steam filesize uploads, these can be freely downloaded from the nexusmods xVATrainer page.

Dataset annotation


The main screen of xVATrainer contains a dataset explorer, which gives you an easy way to view, analyze, and adjust the data samples in your dataset. It further provides recording capabilities, if you need to record a dataset of your own voice, straight through the app, into the correct format.

Trainer


xVATrainer contains AI model training, for the FastPitch1.1 (with modified training set-up), and HiFi-GAN models (the xVASynth "v2" models). The training follows a multi-stage approach especially optimized for maximum transfer learning (fine-tuning) quality. The generated models are exported into the correct format required by xVASynth, ready to use for generating audio with.

Batch training is also supported, allowing you to queue up any number of datasets to train, with cross-session persistence. The training panel shows a cmd-like textual log of the training progress, a tensorboard-like visual graph for the most relevant metrics, and a task manager-like set of system resources graphs.

Tools


There are several data pre-processing tools included in xVATrainer, to help you with almost any data preparation work you may need to do, to prepare your datasets for training. There is no step-by-step order that they need to be operated in, so long as your datasets end up as 22050Hz mono wav files of clean speech audio, up to about 10 seconds in length, with an associated transcript file with each audio file's transcript. Depending on what sources your data is from, you can pick which tools you need to use, to prepare your dataset to match that format. The included tools are:


  • Audio formatting - a tool to convert from most audio formats into the required 22050Hz mono .wav format
  • AI speaker diarization - an AI model that automatically extracts short slices of speech audio from otherwise longer audio samples (including feature length movie sized audio clips). The audio slices are additionally separated automatically into different individual speakers
  • AI source separation - an AI model that can remove background noise, music, and echo from an audio clip of speech
  • Audio Normalization - a tool which normalizes (EBU R128) audio to standard loudness
  • WEM to OGG - a tool to convert from a common audio format found in game files, to a playable .ogg format. Use the "Audio formatting" tool to convert this to the required .wav format
  • Cluster speakers - a tool which uses an AI model to encode audio files, and then clusters them into a known or unknown number of clusters, either separating multiple speakers, or single-speaker audio styles
  • Speaker similarity search - a tool which encoders some query files, a larger corpus of audio files, and then re-orders the larger corpus according to each file's similarity to all the query files
  • Speaker cluster similarity search - the same as the "Speaker similarity search" tool, but using clusters calculated via the "Cluster speakers" tool as data points in the corpus to sort
  • Transcribe - an AI model which automatically generates a text transcript for audio files
  • WER transcript evaluation - a tool which examines your dataset's transcript against one auto-generated via the "Transcribe" tool to check for quality. Useful when supplying your own transcript, and checking if there are any transcription errors.
  • Remove background noise - a more traditional noise removal tool, which uses a clip of just noise as reference to remove from a larger corpus of audio which consistently has matching background noise
  • Silence Split - A simple tool which splits long audio clips based on configurable silence detection

Special thanks:


D0lphin, flyingvelociraptor, Caden Black, Max Loef, LadyVaudry, Thuggysmurf, radbeetle, TomahawkJackson, Solstice_, Bungles, midori95, eldayualien, John Detwiler, Cecell, Wandering Youth, ellia, Retlaw83, Trixie, CHASE MCKELVY, Leif, ionite, Joshua Jones, Jaktt1337, David Keith vun Kannon, Netherworks (Jo-Jo), neci, Rachel Wiles, Imogen, Deer, Linthar, sadfer, Danielle, Hector Medima, Sh1tMagnet, ReaperStoleMyStyle, AshbeeGaming, TCG, Lady Steel, Mikkel Jensen, CookieGalaxy, GrumpyBen, Adrilz, ReyVenom, dog, bourbonicRecluse, ShiningEdge, Dozen9292, manlethamlet, smokeandash, Elias V, EnculerDeTaMere, SKiLLsSoLoN, J, finalfrog, Hound740, Buck, Yael van Dok, ChrisTheStranger, Isabel, Fuzzy Lonesome, Drake, Beto, AceAvenger, bobbigmac, Alexandra Whitton, yic17, Joebobslim, ThatGuyWithaFace, Sergey Trifonov, Zensho, AgitoRivers, beccatoria, valo999, Ne0nFLaSH, Caro Tuts, Jack in the Hinter, Hammerhead96 ., Bewitched, Para, Wht??? Why??, Shadowtigers, PConD, Lulzar, Ryan W, Wyntilda, Gorim, Krazon, Tako-kun, Walt, Katsuki, Ember2528, RetconReality, Hazel Louise Steele, Laura Almeida, Althecow, PatronGuy, squirecrow, cramonty, crash blue, Syrr, David, Hawkbar, John S., Autumn, pimphat, FeralByrd, Comical, Dogmeat114, Dezmar-Sama, Michael Gill, Jacob Garbe, NerfViking, Dinonugget, RedneckJP007, stormalize, Golem, Luckystroker, Hapax, Vahzah Vulom, Tempuc, CAW CAW, stljeffbb, bart, MrJoy, Zoenna, Calvin, Aosana Bluewing, Dan Brookes, CDante, HunterAP, Kadisra, candied_skull, hairahcaz, nairaiwu, Mar, Paraffine, Nawen_Syaka, Amy Parker, Loseron, katiefraggle, Freon, deepbluefrog, myles.app, hanbonzan, Scientist Salari-Ren, Roman Tinkov, zackc1play, An abstract kind of horror, L, Mihu123, Trisket, Aelarr, Flipdark95, Timo Steiner, humocs, Optimist Vamscenes, Patrick VanDusen, praxis22, Rui Orey, Craig Fedynich, FrenchToast, Dorpz, cesm23, BoB, Cutup, Botty Butler, tjn2222, Matthew Warren, Tom Green, Passionate Lobster, Precipitation, Veks, Baki Balcioglu, Fenris, Patrik K., Oddbrother, E.M.A, DrogerKerchva, Camurai, hthek, iggyzee, Moppy, Stee_Muttlet, asbestos my beloved, TrueBlue, something106, woah00z, Sam Darling, JoshuaJSlone, vvvpppmmm, OvrTheTopMan, munchyfly, DarkNemphis, Justin McGough, Billyro, DIY_Rene, kevmasters, Stu, Sasquatch Bill, Inconsistent, Gothic 3 The Age of War, www48, Slothman, mavrodya petrov, ronaldomoon, Kostin Oleksandr Anatoliiovych, Ryan Lippen, Edward Hyde, Echoes, Vape Gwagwa, Kelg Celcs, Kneelers, Meryl Coker, Alan Gonzalez, PTC001, Hector Medima, CinnaMewRoll, Grant Spielbusch, Sean Lyons, Charles Hufnagel, Kirill Akimov, Mister Lyosea, Anthony Crane, Sh1tMagnet

系统需求

    最低配置:
    • 需要 64 位处理器和操作系统
    • 操作系统: Windows 10
    • 处理器: i7 4700k or later (the more cores/threads the better)
    • 内存: 8 GB RAM
    • 显卡: NVIDIA and CUDA, 6+GB VRAM
    • 存储空间: 需要 25 GB 可用空间
    推荐配置:
    • 需要 64 位处理器和操作系统

xVATrainer 的顾客评测

评测结果


购得方式


语言


日期范围
要查看某个日期范围内的评测,请在上方图表中点击并拖动选定的范围或是点击某特定时间柱。

显示图表



游戏时间
按用户的游戏时间筛选此评测撰写时的评测:



无最低限制无最高限制

显示
按选择的显示顺序显示评测





了解更多
显示图表
 
隐藏图表
 
筛选条件
排除跑题评测活动
游戏时间:
大部分在 Steam Deck 上
无其他评测符合上述筛选条件
调整上方筛选条件以查看其它评测
加载评测中…