xVATrainer is a UI-based machine learning app used for training TTS voice models using video game voices, for use in xVASynth.
Toate recenziile:
Pozitive (11) - 100% din cele 11 recenzii ale utilizatorilor pentru acest software sunt pozitive.
Data lansării:
1 apr. 2022
Dezvoltator:
Editor:
Etichete

Conectează-te pentru a adăuga acest articol în lista ta de dorințe, a-l urmări sau a-l marca drept ignorat.

Nu este disponibil în limba: Română

Acest produs nu este disponibil în limba ta locală. Te rugăm să consulți lista de mai jos cu limbile în care jocul este disponibil înainte de achiziționare

Folosește xVATrainer

Gratuit
 

Despre acest Software

xVATrainer is the companion app to xVASynth, the AI text-to-speech app using video game voices. xVATrainer is used for creating the voice models for xVASynth, and for curating and pre-processing the datasets used for training these models. Check the nexusmods page description for more details, instructions, and updates. Join the Discord for support, and community advice.

IMPORTANT: The "priors" files NEED to be installed for v3 voice training to be possible. Don't forget to download and install these. This is synthetic data (+ some real data from the NVIDIA HIFI TTS and VCTK datasets) to maintain multi-lingual and voice range capabilities when fine-tuning individual voices, similar to Dreambooth training. Due to steam filesize uploads, these can be freely downloaded from the nexusmods xVATrainer page.

Dataset annotation


The main screen of xVATrainer contains a dataset explorer, which gives you an easy way to view, analyze, and adjust the data samples in your dataset. It further provides recording capabilities, if you need to record a dataset of your own voice, straight through the app, into the correct format.

Trainer


xVATrainer contains AI model training, for the FastPitch1.1 (with modified training set-up), and HiFi-GAN models (the xVASynth "v2" models). The training follows a multi-stage approach especially optimized for maximum transfer learning (fine-tuning) quality. The generated models are exported into the correct format required by xVASynth, ready to use for generating audio with.

Batch training is also supported, allowing you to queue up any number of datasets to train, with cross-session persistence. The training panel shows a cmd-like textual log of the training progress, a tensorboard-like visual graph for the most relevant metrics, and a task manager-like set of system resources graphs.

Tools


There are several data pre-processing tools included in xVATrainer, to help you with almost any data preparation work you may need to do, to prepare your datasets for training. There is no step-by-step order that they need to be operated in, so long as your datasets end up as 22050Hz mono wav files of clean speech audio, up to about 10 seconds in length, with an associated transcript file with each audio file's transcript. Depending on what sources your data is from, you can pick which tools you need to use, to prepare your dataset to match that format. The included tools are:


  • Audio formatting - a tool to convert from most audio formats into the required 22050Hz mono .wav format
  • AI speaker diarization - an AI model that automatically extracts short slices of speech audio from otherwise longer audio samples (including feature length movie sized audio clips). The audio slices are additionally separated automatically into different individual speakers
  • AI source separation - an AI model that can remove background noise, music, and echo from an audio clip of speech
  • Audio Normalization - a tool which normalizes (EBU R128) audio to standard loudness
  • WEM to OGG - a tool to convert from a common audio format found in game files, to a playable .ogg format. Use the "Audio formatting" tool to convert this to the required .wav format
  • Cluster speakers - a tool which uses an AI model to encode audio files, and then clusters them into a known or unknown number of clusters, either separating multiple speakers, or single-speaker audio styles
  • Speaker similarity search - a tool which encoders some query files, a larger corpus of audio files, and then re-orders the larger corpus according to each file's similarity to all the query files
  • Speaker cluster similarity search - the same as the "Speaker similarity search" tool, but using clusters calculated via the "Cluster speakers" tool as data points in the corpus to sort
  • Transcribe - an AI model which automatically generates a text transcript for audio files
  • WER transcript evaluation - a tool which examines your dataset's transcript against one auto-generated via the "Transcribe" tool to check for quality. Useful when supplying your own transcript, and checking if there are any transcription errors.
  • Remove background noise - a more traditional noise removal tool, which uses a clip of just noise as reference to remove from a larger corpus of audio which consistently has matching background noise
  • Silence Split - A simple tool which splits long audio clips based on configurable silence detection

Special thanks:


D0lphin, flyingvelociraptor, Caden Black, Max Loef, LadyVaudry, Thuggysmurf, radbeetle, TomahawkJackson, Solstice_, Bungles, midori95, eldayualien, John Detwiler, Cecell, Wandering Youth, ellia, Retlaw83, Trixie, CHASE MCKELVY, Leif, ionite, Joshua Jones, Jaktt1337, David Keith vun Kannon, Netherworks (Jo-Jo), neci, Rachel Wiles, Imogen, Deer, Linthar, sadfer, Danielle, Hector Medima, Sh1tMagnet, ReaperStoleMyStyle, AshbeeGaming, TCG, Lady Steel, Mikkel Jensen, CookieGalaxy, GrumpyBen, Adrilz, ReyVenom, dog, bourbonicRecluse, ShiningEdge, Dozen9292, manlethamlet, smokeandash, Elias V, EnculerDeTaMere, SKiLLsSoLoN, J, finalfrog, Hound740, Buck, Yael van Dok, ChrisTheStranger, Isabel, Fuzzy Lonesome, Drake, Beto, AceAvenger, bobbigmac, Alexandra Whitton, yic17, Joebobslim, ThatGuyWithaFace, Sergey Trifonov, Zensho, AgitoRivers, beccatoria, valo999, Ne0nFLaSH, Caro Tuts, Jack in the Hinter, Hammerhead96 ., Bewitched, Para, Wht??? Why??, Shadowtigers, PConD, Lulzar, Ryan W, Wyntilda, Gorim, Krazon, Tako-kun, Walt, Katsuki, Ember2528, RetconReality, Hazel Louise Steele, Laura Almeida, Althecow, PatronGuy, squirecrow, cramonty, crash blue, Syrr, David, Hawkbar, John S., Autumn, pimphat, FeralByrd, Comical, Dogmeat114, Dezmar-Sama, Michael Gill, Jacob Garbe, NerfViking, Dinonugget, RedneckJP007, stormalize, Golem, Luckystroker, Hapax, Vahzah Vulom, Tempuc, CAW CAW, stljeffbb, bart, MrJoy, Zoenna, Calvin, Aosana Bluewing, Dan Brookes, CDante, HunterAP, Kadisra, candied_skull, hairahcaz, nairaiwu, Mar, Paraffine, Nawen_Syaka, Amy Parker, Loseron, katiefraggle, Freon, deepbluefrog, myles.app, hanbonzan, Scientist Salari-Ren, Roman Tinkov, zackc1play, An abstract kind of horror, L, Mihu123, Trisket, Aelarr, Flipdark95, Timo Steiner, humocs, Optimist Vamscenes, Patrick VanDusen, praxis22, Rui Orey, Craig Fedynich, FrenchToast, Dorpz, cesm23, BoB, Cutup, Botty Butler, tjn2222, Matthew Warren, Tom Green, Passionate Lobster, Precipitation, Veks, Baki Balcioglu, Fenris, Patrik K., Oddbrother, E.M.A, DrogerKerchva, Camurai, hthek, iggyzee, Moppy, Stee_Muttlet, asbestos my beloved, TrueBlue, something106, woah00z, Sam Darling, JoshuaJSlone, vvvpppmmm, OvrTheTopMan, munchyfly, DarkNemphis, Justin McGough, Billyro, DIY_Rene, kevmasters, Stu, Sasquatch Bill, Inconsistent, Gothic 3 The Age of War, www48, Slothman, mavrodya petrov, ronaldomoon, Kostin Oleksandr Anatoliiovych, Ryan Lippen, Edward Hyde, Echoes, Vape Gwagwa, Kelg Celcs, Kneelers, Meryl Coker, Alan Gonzalez, PTC001, Hector Medima, CinnaMewRoll, Grant Spielbusch, Sean Lyons, Charles Hufnagel, Kirill Akimov, Mister Lyosea, Anthony Crane, Sh1tMagnet

Cerințe de sistem

    Minim:
    • Necesită un procesor și sistem de operare pe 64 de biți
    • SO: Windows 10
    • Procesor: i7 4700k or later (the more cores/threads the better)
    • Memorie: 8 GB RAM
    • Grafică: NVIDIA and CUDA, 6+GB VRAM
    • Stocare: 25 GB spațiu disponibil
    Recomandat:
    • Necesită un procesor și sistem de operare pe 64 de biți

Recenziile clienților pentru xVATrainer

Tipul recenziilor


Tipul achiziției


Limbă


Interval de date
Pentru a vedea recenziile dintr-un anumit interval calendaristic, te rugăm să faci clic și să tragi o selecție pe un grafic de mai sus sau apasă pe o bară specifică.

Afișează graficul



Timp petrecut
Filtrează recenziile în funcție de timpul petrecut de recenzor în joc până la momentul scrierii acestora:



Niciun minim la Niciun maxim

Afișează
Arată recenziile în ordinea de afișare selectată





Află mai multe
Afișează graficul
 
Ascunde graficul
 
Filtre
Se exclude activitatea cu recenzii irelevante
Timp petrecut:
Jucat în principal pe Steam Deck
Nu mai există recenzii care să se potrivească cu filtrele setate mai sus
Ajustează filtrele de mai sus pentru a vedea alte recenzii
Se încarcă recenzii...