If you went to school in the 1980s, well, you'll probably find this to be one of the best video game trailers you'll ever see.

Borderlands 2

The Hidden Beauty Of Skill Trees

The recent launch of Path Of Exile's open beta—a new hack & slash action RPG known especially for its enormous skill tree, as you can see in the pic above—inspired us to collect some of the best looking skill and research trees spanning a variety of genres. It's interesting to see how creatively devs can handle this part of a game.

The Sphere Grid Of Final Fantasy X

The Hidden Beauty Of Skill Trees source: Zenon1320's gameplay video

The Skill Tree In Hawken

The Hidden Beauty Of Skill Trees source: Hawken Forums

The Passive Skill Tree In Path Of Exile

The Hidden Beauty Of Skill Trees source:

The Technology Trees In The Civilization Series

The Hidden Beauty Of Skill Trees The Hidden Beauty Of Skill Trees source: Civfanatics

The Skill Tree In Borderlands 2

The Hidden Beauty Of Skill Trees source:

The Research Tree In Ascendancy

The Hidden Beauty Of Skill Trees source: Ascendancy Manual

The Heron, The Shark And The Spider In Far Cry 3

The Hidden Beauty Of Skill Trees source: own screenshot

The Character Abilities Screen In The Witcher 2

The Hidden Beauty Of Skill Trees source: The Witcher Wiki

The Skill Tree In Dead Island

The Hidden Beauty Of Skill Trees source: Gerald Hopkins' gameplay

The Talent Tree In Star Wars: The Old Republic

The Hidden Beauty Of Skill Trees source: Biowarefans

Make sure to submit your own picks in the comments below, with visual support.


New Borderlands 2 DLCs Add a Myriad of Skins, HeadsHere's a look at the new costumization options available in Borderlands 2. Each set is available for 80 Microsoft Points or $0.99 / £0.75 / 0,99€ for the Xbox 360 and PS3/PC, respectively (separate from the Season Pass). You can find a shot of the "Madness" set below.

A Flood of New Borderlands 2 Heads and Skins Available, Deck Your Characters Out Today! [2K Games Blog]

New Borderlands 2 DLCs Add a Myriad of Skins, Heads


Science Explains Why We'll Probably Never Be Able To Respawn in Real LifeYou're running out of ammo, the last medikit you saw was three towns behind, and that nice guy shooting at you just got a sniper to help him out.

Without divine intervention and after that nice guy gets a lucky shot (and why wouldn't he?), you (or what's left of you) are probably headed to the nearest respawn point. And just like that, within the game, Pum! Your character appears out of nowhere.

Save points are a bit different. Usually, in games that allow you to save at any moment (ie: Deus Ex: Human Revolution—and I'm glad it lets us!), you just reappear in the same exact spot with the same exact gear you had.

Other games save when a big boss battle is coming up or when you choose to save (e.g. Serious Sam 3 BFE), and you just reappear on the point where you saved.

Saving a game and respawning is something that happens outside of the world of the game; the player is conscious of this, but the character is not, thus breaking the fourth wall. But there are exceptions to this rule, and Borderlands is one of them. So, how could one imagine a respawn point working?

The physics of respawning

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

In Borderlands, there are New-U stations that "store the character DNA against the possibility of accidental death or dismemberment" and can "digistruct" an entirely new body to replace the recently deceased one, a hand-wavey way to explain how the game save works.

We're going to discuss a bit of physics in this article, but thinking about an action game, being completely faithful to the laws of physics would be a bit boring. For example, if you die, you die, and that's the end, as long as our knowledge of the laws of physics goes!

New-U stations save the game when the character walks within range of it. We will get into the physics of the matter (if you pardon the pun), but just the idea of explaining why a character can reappear is interesting. There's even a tunnel when you're being brought back and an associated cost of 7% of your character's funds! It can be a lot from the player's perspective, but that's just pocket change considering you are actually "reconstructing" a character.

In a nutshell, New-U stations use solid light to digistruct a person, weapons from holsters, even cars. Therefore, the DNA explanation mentioned above is not sufficient. When you are reconstructed from a New-U station, the character returns with all its weapons, ammunition, clothes, etc. So if the New-U station stored only DNA, it would be a bit hard to reconstruct stuff that doesn't have DNA to begin with—think back-in-time-terminator-naked style. There's also the use of another term, "solid light," that is an actual scientific term, but again applied in a science fiction way, in a sense of light transforming into matter.

So how would a more physics-based "reconstruction" work?

Making a "new you" (who's exactly like your "old you")

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

Lawrence Krauss (a fantastic physicist and writer) did some calculations on a similar problem, the transporter from Star Trek. There are other issues that Krauss discusses, but the physics of acquiring the data from the object and reconstructing it would be similar. Krauss even goes into a deeper philosophical question: are human beings only the sum of their atoms? Is there something else that makes us human, besides matter? It's a very interesting question, but one that we will not delve into. So we're going to stick with physics questions: how much information would one need to store in order to recreate a human being? How do you acquire this information? And how much energy is needed to do so?

The average human body is composed of 1x1028 atoms.

To be able to reconstruct it from a stored pattern, first this pattern must be stored, of course. But how would one go about doing that? The scanner would have to acquire the position and momentum of all atoms, without displacing them. It would need to determine the type of atom that you're scanning, too. It also would have to do it very quickly, taking into account that the character probably wouldn't be standing still. And here quantum mechanics shows to start spoiling the fun, with its pesky Heisenberg principle.

The Heisenberg principle states that, independent of the measure apparatus or future technologies, there are certain combinations of measures that are impossible to be made with arbitrary precision.

For example, it is possible to determine very precisely the position of a subatomic particle—like an electron—but not the momentum at the same time, and vice versa, or the state that the particle is, but not how long the particle will stay in that state.

So for our "scanner beam" to be able to selectively "lock" on a particular atom (which would be a feat on its own) and acquire its information, would disturb that same atom from its present state, somewhat irreversibly. It gets even worse, since, if we need to increase the precision of the beam to get a higher resolution, more energy would be needed, and the more that poor atom would be disturbed. And all that would be done within seconds!

To keep going, let's now assume that this scanner beam works. How much space would be needed to store all this information?

But where would we store all this?

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

We would need to store not only the position and velocity of each atom, but also its energetic state, whether it's making a bond with other atoms, the vibrational and rotational states, etc.

In physics, each of these pieces of information is called a degree of freedom, and a system is determined if all the degrees of freedom can be defined.

Let's say that we can store all the degrees of freedom of all the atoms. Let's take an educated guess and say that all the degrees of freedom of one atom can be described by 5kB. While we're at it, let's also take into account the weapons and stuff that you carry on that giant backpack, and say that we need to store 1x1029 atoms.

That would give us 5 x 1029 kilobytes, or 50000 yottabytes of information to be stored (and retrieved!) in a few seconds.

Given the world's current supply of hard drives, we couldn't get a single yottabyte. There are some recent calculations (using the Bekenstein limit) that estimate the information needed to describe a human being to be around 1x1044 bytes, considering the maximum amount of information given using a finite amount of energy in a finite region of space, which happens to be larger than our previous estimate.

You died! What happens now?

You died, fini, caput, so the New-U station needs to reconstruct you. We got a nice blueprint of 50000 yottabytes with all your information.

First problem: we need the atoms! It shouldn't be a big deal for the more common ones, like oxygen (65%, in mass), carbon (18% in mass) and hydrogen (10% in mass).

Things start to get a bit more problematic with the rare earth ones, even uranium and beryllium, so each New-U station would have to have an  "atoms stock" to be able to reconstruct a character. And remember, there's also all the weapons… It seems that the weapons are recreated from scratch when the character is recreated, but dematerialized to "hard light" when the character is not using it.

But wait! It gets even more complicated…

So far, we only dealt with atomic level problems, considering that only saving the atoms themselves and not its constituents is necessary.

Each atom is composed by some number of nucleons (protons and neutrons) and electrons, and a lot of empty space. Really, a lot: more than 99% of the mass of the atom is at its center, where the nucleons are, but the size of the nucleous is 10000 smaller that the atom itself.

What prevents things falling through other things is the electric field, or the repulsion of the electric field by equal charges. Chemical bonds are formed to minimize the energy, but getting the atoms together can be a bit tricky, exactly because of that electric repulsion.

There are also reactions that need energy to start and keep going, and others liberate energy when the chemical bonds are formed from the free elements. How much energy? We will have to simplify greatly here: some chemical reactions liberate energy, while others absorb it, so it's not only a problem of putting everything together, but also putting or removing the right amount of energy in the right order.

After seeing the enormous amount of information that would need to be scanned and stored, the energy and materials that would be needed and with all the difficulties that physics presents us, it's not like we would see a New-U on the corner anytime soon (or ever), but the possibilities for understanding the science behind the possible processes is very interesting. There are some fundamental physical barriers and others that are more technological. But nonetheless, not breaking the fourth wall is awesome and talking physics about a game is always awesome.

And all this for only 7% of your funds!

Ivan is a computational physicist and postdoctoral fellow at Laval University and science media consultant for Thwacke Consulting. For more follow Thwacke on Twitter and Facebook!

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

Zerg Rushes, Suicide Attacks and Splash Damage: How Real Insect Warfare is Similar to StarCraft

Editor's note: Our guy at Thwacke, a Canadian outfit that advises game developers in all things science, writes to us and says he's got an expert who can explain how the Zerg in StarCraft have a whole lot in common with real insects. More »


Beware: spoilers for hidden secrets in Borderlands 2's latest DLCSir Hammerlock's Big Game Hunt—follow. Also STDs might follow, so, you know, beware that, too.

Now that we got that out of the way, prepare yourself for The Clap, as presented to you by GameFront, the finders of all things hidden.

I need one of these Claptraps guarding the outside of my future mansion. Someone see to this.


Find Out if Your PC Can Run BioShock Infinite (And Has Room For It!)Here are the minimum and recommended specs for running BioShock Infinite PC. We can't say for sure whether you should run the game on PC, as opposed to Xbox 360 or PS3. But, judging by how good the first 4 1/2 hours of the game are, we recommend your run it on something.

These specs are from Infinite studio Irrational Games' official site:


OS: Windows Vista Service Pack 2 32-bit
Processor: Intel Core 2 DUO 2.4 GHz / AMD Athlon X2 2.7 GHz
Memory: 2 GB
Hard Drive: 20 GB free
Video Card: DirectX10 Compatible ATI Radeon HD 3870 / NVIDIA 8800 GT / Intel HD 3000 Integrated Graphics
Video Card Memory: 512 MB
Sound Card: DirectX Compatible


OS: Windows 7 Service Pack 1 64-bit
Processor: Quad Core Processor
Memory: 4 GB
Hard Drive: 30 GB free
Video Card: DirectX11 Compatible, AMD Radeon HD 6950 / NVIDIA GeForce GTX 560
Video Card Memory: 1024 MB
Sound Card: DirectX Compatible

If you want to know about control options and other PC options, read the full post.

PC Specifications for BioShock Infinite Announced! [Irrational Games]


Kevin, Jake and Stewie of website Hungercraft are to thank for this incredible recreation of BioShock's Rapture in Minecraft, captured perfectly not just in block form, but in a fantastic trailer as well.

If you're over Minecraft recreations, imagine it's LEGO BioShock. That'll get you there.

The map recreating the underwater metropolis will be released on January 19.

Bioshock in Minecraft [FPS General, via VentureBeat]

XCOM: Enemy Unknown

Now You Can Recruit Your Facebook Friends To Fight (And Die) For You In XCOMOne of the best things about XCOM: Enemy Unknown is naming your squaddies after your friends. It's a lot of fun to tell people you know about their daring exploits in the battle against the aliens, and equally goofy to inform them of their heroic—or needless—deaths. (Of course, sometimes that second part can get weird.)

Now it's easier than ever for people playing the game on PC to get their friends into the fray, thanks to the XCOM Facebook Exporter app by Nexus user Automator. By way of a not-that-complicated 2-step process, you can export the names of your Facebook friends and load the file up in a converter and copy the names into the game. I haven't used this app yet, but it sounds like despite some gender-bending issues that you'll have to address by digging into the in-game customization, it works well. And of course, if your soldiers do fall in the line of duty, you can also memorialize them on Facebook, too.

Finally! Your favorite support soldier can have the same name as that random guy you were on the swim team with, and your heavy gunner can be that bully you're only Facebook friends with because you're so much cooler than he is now.

XCOM Facebook Exporter [Xcom Nexus via Rowan Kaiser]


Borderlands 2 Designs So Good You'll Shoot Things To Get ThemIndonesian artist Machine56, who you might have seen here once or twice before, has more game-related design goodness to share, this time with a range of Borderlands pieces.

Due to be released soon on Gearbox's store, there are designs for shirts and hoodies, as well as some tantalising ideas for masks, something the artist has done before with his personal collections. I'm not sure how many will actually be made commercially available, but it'll at least be some of them.

Man, I don't even like Borderlands 2 that much and I want some of these bad.

MAC56 X BL2 [machine56]

Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them Borderlands 2 Designs So Good You'll Shoot Things To Get Them

XCOM: Enemy Unknown

XCOM: Enemy Unknown is Kotaku's 2012 Game of the YearThe staff of Kotaku nominated nine games for 2012 Game of the Year. One game, XCOM: Enemy Unknown, blew the competition away.

The PC and console turn-based strategy game from the masterminds behind Civilization was a dark horse in our staff voting. Last week, as we publicized our nominations, two other games—the dramatic five-part adventure game, The Walking Dead and the moving, quiet multiplayer PlayStation 3 hike Journey—had attracted more attention. Both have won numerous Game of the Year awards from other awards-givers.

Our nominees in 2012 were a diverse bunch. The big budget first-person shooter open-jungle adventure Far Cry 3 turned heads. Smaller, more obscure games like the locked-room interactive-novel Zero Escape: Virtue's Last Reward, the brutal Indiana Jones-esque platformer/roguelike Spelunky, the mesmerizing puzzle "geometric rhythm seizure survival" game Super Hexagon, the complex 400-year dynasty-simulator Crusader Kings II and the autobiographical, wrenching Papo & Yo all drew some votes.

But the winner was XCOM: Enemy Unknown, a game for the strategic-minded among us, a game that updates a classic and once again presents a worldwide battle of humans against alien invaders as a terrific variation of violent chess. The game is deep but intuitive. It rewards planning and focus, it penalizes failure. It requires patience but can still be exciting. It's an easy game to start playing and a tough one to stop. Plus, that music when you're going into battle, always gets us pumped.

We salute XCOM's developers, Firaxis studios. We still recommend that players invest in plasma weapons. And we look forward to a 2013 full of great video games.


Search news
Nov   Oct   Sep   Aug   Jul   Jun  
May   Apr   Mar   Feb   Jan  
Archives By Year
2018   2017   2016   2015   2014  
2013   2012   2011   2010   2009  
2008   2007   2006   2005   2004  
2003   2002