Manipulate chemicals and proteins with your hands, explore chemistry and nanotechnology from a whole new perspective, collaborate with others, learn and create like never before.
All Reviews:
9 user reviews - Need more user reviews to generate a score
Release Date:
Aug 29, 2018
Developer:
Publisher:

Sign in to add this item to your wishlist, follow it, or mark it as not interested

Notice: Requires a virtual reality headset. See the VR Support section for more info.

Use Nanome

Free
 

Recent updates View all (4)

November 2

Nanome is Advancing Crystallography

Crystals are some of the most useful, interesting, and complex 3-dimensional structures in the world. To most, crystals are gems found in geodes and rings. However, crystals are of core significance to researchers in nanotech and chemical synthesis, like structural biologists.

For instance, in the drug discovery process, computational chemists work with protein engineers to create nano-medicine. Drug design is a massive undertaking, requiring data science, visualization, and lots of plotting. Before any computer-aided drug design, even a small molecule, is ready for any of this analysis, it must undergo crystallography. Simply put, to modify a structure, a chemical designer needs to know what it looks like — then the molecular modeling process can begin.

Given the versatility and importance of crystals, crystallography is a most important field of modern research, essential to the study and engineering of nanoscale systems.

Modern Crystallography Visualization
Today, researchers have utilized X-ray crystallography to map over 13,000 macromolecule structures — if you have ever looked at a representation of a protein, the data behind it was probably created by a crystallographer (with a powerful X-ray blaster).


Viewing a protein in VR.
Atomic-scale study and manipulation of crystals presents a challenge. By nature of their three-dimensionality, crystals are difficult to represent and explain in widely-used two dimensional mediums, like typical computer monitors. To suit the needs of engineers and students working with crystal structures and improve the efficiency their workflow, more powerful and intuitive tools are necessary. That’s where Nanome comes in:

Tomorrow’s Crystallography Laboratory
Nanome is a collaborative molecular design platform in Virtual Reality. It enables everyone from students to professional engineers to improve their intuition and develop new insights into nanoscale phenomena and molecular systems.



Intuitive interaction with crystal structures in Nanome.
When holding once-abstract and conceptual structures, like proteins, in your own two hands, a new sense of comfort and intuition naturally arises. UCSD’s Professor Zoran Radic, Principal Investigator on NIH-funded protein structure research, says that “looking at [protein] complexes in VR yields much more immediately obvious conclusions than any other kinds of visualization.” Within moments of entering VR, many of Professor Radic’s crystallographer colleagues develop new insights and understandings into their own structures.


VR Protein Structure visualization unlocks a world of value for crystallographers, and their reactions show this. This leads us to ponder the insights and value Nanome could bring to crystallographers involved in non-protein fields of research like piezoelectronics. For example, with crystal lattice visualization, researchers could make intuitive leaps in the optimization of materials with structure-dependent electromechanical properties.

Next Steps
Nanome has taken a huge step towards improving the tools of crystallographers by implementing electron density maps. These maps, containing a crystallography experiment’s direct results, are essential for advanced research. To Nanome it’s clear: innovations of the future will occur at the nanoscale. The first step is building the right tools.

Check out our Blog for more.
0 comments Read more

August 6

Nano-One Will be coming out of early access later this month as Nanome

Every single day for the past two years, we've been working extremely hard to take molecular modeling in VR to the next level.

We're very pleased to announce that we'll be taking Nano-One out of Early Access for a full release! We're also renaming Nano-One as Nanome (Na-Nome, like Genome for Nano).

More information on our release and news check out our blog!

Currently, Nanome is used in top pharmaceutical research facilities in big pharma and in academic research institutions. In August of 2018, Nanome is coming to all major VR app stores!

Nanome allows you to go down to the nanoscale and model and simulate proteins and chemicals. Import PDB's/SDFs/mmCIF, manipulate ligands, apply energy minimization algorithms, all with your colleagues right next to you.

Be sure to tune into our weekly twitch streams at twitch.tv/nanome_inc !

Get the latest on Nanome on our youtube: http://youtube.com/nanome
0 comments Read more

Nanome is Advancing Crystallography

Crystals are some of the most useful, interesting, and complex 3-dimensional structures in the world. To most, crystals are gems found in geodes and rings. However, crystals are of core significance to researchers in nanotech and chemical synthesis, like structural biologists.

For instance, in the drug discovery process, computational chemists work with protein engineers to create nano-medicine. Drug design is a massive undertaking, requiring data science, visualization, and lots of plotting. Before any computer-aided drug design, even a small molecule, is ready for any of this analysis, it must undergo crystallography. Simply put, to modify a structure, a chemical designer needs to know what it looks like — then the molecular modeling process can begin.

Given the versatility and importance of crystals, crystallography is a most important field of modern research, essential to the study and engineering of nanoscale systems.

Modern Crystallography Visualization
Today, researchers have utilized X-ray crystallography to map over 13,000 macromolecule structures — if you have ever looked at a representation of a protein, the data behind it was probably created by a crystallographer (with a powerful X-ray blaster).


Viewing a protein in VR.
Atomic-scale study and manipulation of crystals presents a challenge. By nature of their three-dimensionality, crystals are difficult to represent and explain in widely-used two dimensional mediums, like typical computer monitors. To suit the needs of engineers and students working with crystal structures and improve the efficiency their workflow, more powerful and intuitive tools are necessary. That’s where Nanome comes in:

Tomorrow’s Crystallography Laboratory
Nanome is a collaborative molecular design platform in Virtual Reality. It enables everyone from students to professional engineers to improve their intuition and develop new insights into nanoscale phenomena and molecular systems.



Intuitive interaction with crystal structures in Nanome.
When holding once-abstract and conceptual structures, like proteins, in your own two hands, a new sense of comfort and intuition naturally arises. UCSD’s Professor Zoran Radic, Principal Investigator on NIH-funded protein structure research, says that “looking at [protein] complexes in VR yields much more immediately obvious conclusions than any other kinds of visualization.” Within moments of entering VR, many of Professor Radic’s crystallographer colleagues develop new insights and understandings into their own structures.


VR Protein Structure visualization unlocks a world of value for crystallographers, and their reactions show this. This leads us to ponder the insights and value Nanome could bring to crystallographers involved in non-protein fields of research like piezoelectronics. For example, with crystal lattice visualization, researchers could make intuitive leaps in the optimization of materials with structure-dependent electromechanical properties.

Next Steps
Nanome has taken a huge step towards improving the tools of crystallographers by implementing electron density maps. These maps, containing a crystallography experiment’s direct results, are essential for advanced research. To Nanome it’s clear: innovations of the future will occur at the nanoscale. The first step is building the right tools.

About This Software

Nanome - Your Home for Nanoscale Design.

Imagine a future where chemistry and the nano-scaled world are no longer difficult to understand. Imagine having the ability to build your own molecular structures out of thin air or explore the intricacies of a DNA strand or understand what medicine looks like at the molecular level.

Features: Import molecular structures from RCSB Protein Databank, Pubchem and Drugbank.
Manipulate molecular structures by literally reaching out and grabbing, rotating, or enlarging your molecule.
See Atoms, Residues, Chains, or Proteins as Stick, Wire, Ball & Stick, or Van der Waals.
Measure distance and angles between atoms.
Mutate amino acids and cycle through rotamer conformations.
Build with any element from the periodic table.
Minimization simulations Duplicate or Split any selected area of your structure to modify or export independently.
Private & public multi-user support including 2D mode In-app camera to capture and export images.

System Requirements

    Minimum:
    • OS: Windows 10
    • Processor: i5 - 4590
    • Memory: 4 GB RAM
    • Graphics: NVIDIA GTX 780
    • Network: Broadband Internet connection
    Recommended:
    • OS: Windows 10
    • Processor: i7 - 4790
    • Memory: 8 GB RAM
    • Graphics: NVIDIA GTX 1060
    • DirectX: Version 12
    • Network: Broadband Internet connection

What Curators Say

2 Curators have reviewed this product. Click here to see them.
Customer reviews
High Volume of Reviews Detected:
Exclude  or  View Only
Review Type


Purchase Type


Language


Date Range
To view reviews within a date range, please click and drag a selection on a graph above or click on a specific bar.

Show graph



Display As:
Review Beta NEW!
When enabled, will sort reviews by new Helpfulness score. Read more about it in the blog post.
Show graph
 
Hide graph
 
Filters
Review Helpfulness Beta Enabled
There are no more reviews that match the filters set above
Adjust the filters above to see other reviews
Loading reviews...