Manipulate chemicals and proteins with your hands, explore chemistry and nanotechnology from a whole new perspective, collaborate with others, learn and create like never before.
All Reviews:
Positive (11) - 90% of the 11 user reviews for this software are positive.
Release Date:
Aug 29, 2018

Sign in to add this item to your wishlist, follow it, or mark it as not interested

Notice: Requires one of the following virtual reality headsets: HTC Vive or Oculus Rift. See the VR Support section for more info.

Use Nanome


Recent updates View all (6)

February 13

Nanome 1.06 now Live!

Hey Nanomers,

The next major update is here! Nanome 1.06 introduces new features and redesigns that will speed up your work flows! Check out the full list with pictures and examples in our newest blog post. Below are some highlights of the newest update.

New Features:
  • Menus have been redesigned to include icons and maintain visually consistency
  • Tooltips have been added across the application
  • Auto align and lock your molecules during the initial loading process
  • Unlock molecules directly on the align menu
  • Extend your selection by angstroms through the Advanced Selection menu
  • Quickly open menu through the new Quick Select button on the wrist
  • Load Pymol session files including their custom labels
  • New knob interaction for changing the Electron Density Map (EDM) sigma and opacity values
  • General improvements to the network to make collaboration smoother.
  • Optimized EDM rendering
  • Reduced application size
  • Easily color your molecules
      1.05 Menus1.06 Menus
0 comments Read more

November 25, 2018

Happy Thanksgiving!

Hi all.

We're excited to announce our weekend promotion for Cyber Monday. For a limited time, we're offering a lifetime discount to Nanome. Visit our website to learn more -

We hope you've enjoyed all the latest updates. We'll soon be releasing additional support for aligning your structures and cycling through multiple ligands at a protein's binding site. Stay tuned as we continue to develop additional functionality and feel free to send us any feedback to

We'd love to hear about how you use Nanome and any additional functionality you would like to be added. Have a great weekend!
0 comments Read more

Nanome is Advancing Crystallography

Crystals are some of the most useful, interesting, and complex 3-dimensional structures in the world. To most, crystals are gems found in geodes and rings. However, crystals are of core significance to researchers in nanotech and chemical synthesis, like structural biologists.

For instance, in the drug discovery process, computational chemists work with protein engineers to create nano-medicine. Drug design is a massive undertaking, requiring data science, visualization, and lots of plotting. Before any computer-aided drug design, even a small molecule, is ready for any of this analysis, it must undergo crystallography. Simply put, to modify a structure, a chemical designer needs to know what it looks like — then the molecular modeling process can begin.

Given the versatility and importance of crystals, crystallography is a most important field of modern research, essential to the study and engineering of nanoscale systems.

Modern Crystallography Visualization
Today, researchers have utilized X-ray crystallography to map over 13,000 macromolecule structures — if you have ever looked at a representation of a protein, the data behind it was probably created by a crystallographer (with a powerful X-ray blaster).

Viewing a protein in VR.
Atomic-scale study and manipulation of crystals presents a challenge. By nature of their three-dimensionality, crystals are difficult to represent and explain in widely-used two dimensional mediums, like typical computer monitors. To suit the needs of engineers and students working with crystal structures and improve the efficiency their workflow, more powerful and intuitive tools are necessary. That’s where Nanome comes in:

Tomorrow’s Crystallography Laboratory
Nanome is a collaborative molecular design platform in Virtual Reality. It enables everyone from students to professional engineers to improve their intuition and develop new insights into nanoscale phenomena and molecular systems.

Intuitive interaction with crystal structures in Nanome.
When holding once-abstract and conceptual structures, like proteins, in your own two hands, a new sense of comfort and intuition naturally arises. UCSD’s Professor Zoran Radic, Principal Investigator on NIH-funded protein structure research, says that “looking at [protein] complexes in VR yields much more immediately obvious conclusions than any other kinds of visualization.” Within moments of entering VR, many of Professor Radic’s crystallographer colleagues develop new insights and understandings into their own structures.

VR Protein Structure visualization unlocks a world of value for crystallographers, and their reactions show this. This leads us to ponder the insights and value Nanome could bring to crystallographers involved in non-protein fields of research like piezoelectronics. For example, with crystal lattice visualization, researchers could make intuitive leaps in the optimization of materials with structure-dependent electromechanical properties.

Next Steps
Nanome has taken a huge step towards improving the tools of crystallographers by implementing electron density maps. These maps, containing a crystallography experiment’s direct results, are essential for advanced research. To Nanome it’s clear: innovations of the future will occur at the nanoscale. The first step is building the right tools.

About This Software

Nanome - Your Home for Nanoscale Design.

Imagine a future where chemistry and the nano-scaled world are no longer difficult to understand. Imagine having the ability to build your own molecular structures out of thin air or explore the intricacies of a DNA strand or understand what medicine looks like at the molecular level.

Features: Import molecular structures from RCSB Protein Databank, Pubchem and Drugbank.
Manipulate molecular structures by literally reaching out and grabbing, rotating, or enlarging your molecule.
See Atoms, Residues, Chains, or Proteins as Stick, Wire, Ball & Stick, or Van der Waals.
Measure distance and angles between atoms.
Mutate amino acids and cycle through rotamer conformations.
Build with any element from the periodic table.
Minimization simulations Duplicate or Split any selected area of your structure to modify or export independently.
Private & public multi-user support including 2D mode In-app camera to capture and export images.

System Requirements

    • OS: Windows 10
    • Processor: i5 - 4590
    • Memory: 4 GB RAM
    • Graphics: NVIDIA GTX 780
    • Network: Broadband Internet connection
    • OS: Windows 10
    • Processor: i7 - 4790
    • Memory: 8 GB RAM
    • Graphics: NVIDIA GTX 1060
    • DirectX: Version 12
    • Network: Broadband Internet connection

What Curators Say

2 Curators have reviewed this product. Click here to see them.

Customer reviews

Review Type

Purchase Type


Date Range
To view reviews within a date range, please click and drag a selection on a graph above or click on a specific bar.

Show graph

Display As:
Review Beta NEW!
When enabled, will sort reviews by new Helpfulness score. Read more about it in the blog post.
Show graph
Hide graph
Review Helpfulness Beta Enabled
There are no more reviews that match the filters set above
Adjust the filters above to see other reviews
Loading reviews...