Mass Effect

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIScience fiction games are littered with dead and dying stars. Mass Effect has its supernova-blasted Mu Relay, eezo mines near neutron stars, and Adepts slinging miniature black holes around. In the Halo universe, artificially-triggered supernovae are the ultimate weapon for exterminating Flood-infested systems. In Spore, you can use black holes as entrances to the galactic subway system of wormholes, and in Starcraft 2, there is a mission where a star "goes nova", enveloping the map in fire.

All of these dead and dying stars are undeniably awesome, but how accurate are they? To find out, we need to take a look at how stars live—and how they die.

The life and death of a star

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIAt the core of a star, the ridiculously high pressure and temperature forces atoms of hydrogen to fuse into helium, producing a huge amount of energy in the process. The sun produces 180 million times more energy every second than all of the nuclear weapons ever exploded.

For most of a star's life, it sits poised in perfect balance, with gravity trying to crush it while the nuclear reactions in the core are trying to blow it apart.

That balance can't last forever.

As hydrogen gets fused into heavier elements, those heavy elements need higher temperatures and pressures for fusion to continue. The core shrinks and heats up, while the outer layers of the star expand like a balloon. This inflated stage in a star's life is called the "red giant" phase. Even though the star is producing more energy than before, that energy is spread out over a much larger surface, so the surface of the star cools down until it is glowing an angry red.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIYou won't like the sun when it's angry: it will grow until its surface is about where the Earth's orbit is now, burning our planet to a crisp.

Most stars are small, like the sun, and they die once the core fills up with carbon. In their last gasps, the radiation from the core blows the rest of the star into space, forming solar-system-sized bubbles called "planetary nebulae". (They have nothing to do with planets. The name is a holdover from when telescopes weren't very good and a circle of gas in the sky looked like the disk of a faint planet.) At the center of each planetary nebula is a white dwarf: a glowing-hot ember from the atomic fires that once powered the star. White dwarfs are about the size of the earth and are made mostly of super-dense carbon. As a white dwarf cools, the carbon can actually crystallize to form planet-sized diamonds.

The great thing about astrophysics is that there are real things out in the universe that are stranger than any science fiction. Some of the impressive discoveries in astrophysics like black holes do make their way into popular culture and video games, but other awesome objects and phenomena slip through the cracks. For instance, white dwarfs just aren't very well known. That's a shame because: hey, planet sized diamonds! Ancient white dwarfs that have cooled down so that they aren't glowing anymore would be practically invisible, and could make great secret caches of resources or rendezvous points in otherwise featureless interstellar space. Adding this extra level of sophistication would make the game more realistic while appealing to increasingly well-educated gamers.

And as we'll see in the next section, white dwarfs can be destabilized to explode as a special type of supernova, which makes for some very interesting possibilities.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIThe Helix nebula is a famous planetary nebula, formed when a star like the sun died.

Repeat after me: a nova is not a supernova

A nova is a special type of explosion that can happen in systems where two stars are orbiting each other (think Tatooine). In this sort of system, one star can evolve to become a white dwarf before the other, so you end up with a white dwarf and a normal star orbiting each other. When the second star starts to form a red giant, the white dwarf will start to suck up the outer layers of its neighbor. Eventually, enough hydrogen piles up on the white dwarf for fusion to begin again, causing a bright explosion. The borrowed hydrogen fuel doesn't last long, so the star cools down after a little while and waits until it has enough fuel again. That's a nova. It's a brief, brilliant flash of light from a dead star that is sucking fuel from its neighbor like a vampire.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIA white dwarf steals fuel from its companion until it has enough for fusion to re-start, causing a nova. Eventually it may get big enough to explode as a special "Type 1a" supernova.

Just to confuse things, it is possible for one of these vampiric white dwarfs to eventually explode as a supernova. There is a certain mass where the white dwarf just can't support its own weight any more, and when it reaches that mass it collapses and is obliterated in a "Type 1a" supernova. These explosions are always the same brightness, so astronomers use them to find out how far away distant galaxies are, and to understand the expansion of the universe.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft II "The star will go nova in a few hours. Meantime the planet's getting bombarded by waves of fire..." – Matt Horner, Starcraft II

When Horner says that above line in StarCraft II, he doesn't actually mean "nova," of course. He means "supernova," the title of the mission. Actual novae aren't often depicted in games because they are overshadowed by their more extreme supernova cousins. Still, for the purposes of the StarCraft II mission it actually would have been better if the star in question was a nova. The idea behind the mission is that the "waves of fire" from the unstable star are advancing across the map, making for a fast-paced race against time. A supernova would just blow the planet to pieces, but a nova is just the right amount of violence: not enough to destroy the whole system, but the sudden blast of energy would certainly cook the sun-facing side of the planet. If the planet rotated very slowly, then the wall of fire in the mission could be the advancing dawn. The intense heating and global fires would cause some pretty extreme windstorms blowing toward the day side, making things dangerous even before the scorching starlight is visible.

And then there's the tantalizing possibility of triggering a white dwarf supernova, something that really needs to be exploited in a game. Every white dwarf supernova occurs at the exact same mass, so if you're looking for the ultimate doomsday weapon, a very advanced civilization (say, Mass Effect's Reapers or Halo's Forerunners) could lob a white dwarf that was just below the critical mass toward a regular star. When they collide, you'd get an instant supernova.

In a struggle to stave off their inevitable demise, really large stars that are 9 to 50 times as big as the sun resort to fusing heavier and heavier elements, ending up with layers of fusion surrounding the core like a thermonuclear onion. The end comes when the star starts producing iron in its core.

Fusing iron consumes energy, so when a star's core fills up with iron, it loses its energy source and implodes. The implosion rebounds off of itself and becomes a supernova explosion that shatters the star. A supernova can be hundreds of billions of times brighter than a normal star, out-shining the entire rest of the galaxy.

In the explosion, atoms are disintegrated and recombined into exotic isotopes and giant atoms like gold and plutonium and uranium. Every atom in the universe heavier than helium was made in the core of a star, and every atom heavier than iron was forged in the crucible of a supernova. As Carl Sagan put it: "The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff."

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIThe onion-like layers (not to scale) of a massive star that is about to explode.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft II"Threading a needle while accelerating around an exploding star, inside a planet that's falling apart? Sure! Why not?" – Serena, Halo Wars cutscene "One Less Star in the Universe"

In Halo Wars, the slipspace drive of the ship Spirit of Fire is jettisoned into a star, causing the star to explode as a supernova and conveniently destroying the Flood-infested "shield world" that was surrounding the star. But can a supernova really be triggered?

We saw above that a white dwarf supernova can be triggered just by adding enough mass. Regular supernovae are more difficult since all the action happens in the core. Halo slipstream drives function by sending material into otherwise inaccessible dimensions, so if you could get the drive to the core of a star intact, it could pump some core material into other dimensions. The resulting void could cause an implosion leading to a supernova.

If the exploding star was between 9 and 20 times the mass of the sun, the supernova will leave behind a ball of neutrons about the size of a city but with the mass of a star. Neutron stars are mind-bogglingly dense. If you were to take every car in the world—about 1.1 billion metric tons of scrap metal—and compact them to the density of a neutron star, they would form a sphere about the size of a gumball.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIThe Crab Nebula was a star once. It exploded as a supernova in 1054, and was so bright that it was visible during the day for 23 days and at night for two years. At its center is the Crab Pulsar: a rapidly spinning neutron star.

Supernova aftermath: neutron stars

Neutron stars have magnetic fields so strong that they could rip you apart atom by atom, and they spin hundreds of times per second. If you've ever seen a spinning figure skater pull in their arms to spin faster you'll understand why. All stars spin, and when you crush one down to the size of a city, you end up with some serious RPMs. The intense, spinning magnetic fields produce beams of radio waves that shine out from the neutron star like a hyperactive lighthouse. When the path of those beams lines up with the earth, the neutron star appears as a pulsing beacon to our radio telescopes: a pulsar.

Neutron stars make an appearance in Mass Effect as a source for element zero: "Eezo is generated when solid matter, such as a planet, is affected by the energy of a star going supernova. The material is common in the asteroid debris that orbits neutron stars and pulsars. These are dangerous places to mine, requiring extensive use of robotics, telepresence, and shielding to survive the intense radiation from the dead star." – Mass Effect Wiki

Mass Effect's element zero is fictional, of course, but neutron stars are among the weirdest places in the universe, so it makes sense for them to be the location for such a weird element. You can't actually mine on a neutron star. The gravity would crush you. The magnetic fields would rip you apart. The blistering temperatures would vaporize you. But it is accurate that there is debris around neutron stars. In fact, the first planets ever discovered around another star were around the neutron star with the poetic name PSR B1257+12! With all of the radioactive elements produced in the supernova and the deadly radiation from the neutron star, it's true that a neutron star planet would be an extremely nasty place to work, but it is at least more feasible to mine than the actual surface of the neutron star.

The Evolution of Stars: The Unusual Astronomy of Mass Effect, Halo, and StarCraft IIArtist's rendition of planets orbiting a neutron star.

Final stop: Black Holes

If the star was really big, then there is no force in the universe strong enough to stop the collapse, and it just goes on forever forming a singularity: a point of infinite density. To escape from the singularity you would have to go faster than the speed of light, which is not possible. In other words, you have yourself a black hole. Black holes are one of the frontiers of physics: Einstein's theory of general relativity does a great job for most of the universe, but inside a black hole it begins to break down.

Even out where we can explain the physics with relativity, the results can be really weird. The gravity around a black hole is so strong that it distorts space and time. If you were watching someone falling into one, you would see their clock slowing down until it appeared to stop, but you would never actually see them fall in past the event horizon! They would disappear, but only because the light that they are emitting would be shifted to longer and longer wavelengths by the intense gravity. The person falling into the black hole wouldn't notice anything different about their clocks, and they would pass right through the event horizon without noticing their time slowing down. Of course, long before that happened the tides would shred them into a stream of atoms (a process called "spaghettification") so it's sort of a moot point.

Black holes get a bad rap as cosmic vacuum cleaners, relentlessly sucking up anything in their path, but they don't actually increase in gravity compared to the original star. If the sun were to somehow instantly turn into a black hole today, all the planets would continue to orbit normally. The mass would still be the same, so we wouldn't suddenly go spiraling down the drain.

Even though black holes by definition don't give off any light, stuff falling into a black hole certainly does. As a black hole eats a star, the gases form a disk around the black hole, and as the gasses in the disk move past one another, friction heats the disk up to millions of degrees so that it shines as a blindingly bright x-ray source.
Black holes are always popular in games since they are so weird and destructive. In Mass Effect, Adepts can sling singularities that are like miniature black holes. These singularities lift enemies (and anything else) into orbit, causing damage and making them vulnerable to other attacks.

In theory, small black holes can be created by smashing matter together with enough force to cause it to collapse into a singularity. In the real world, this is only possible in particle accelerators and the resulting black hole would be subatomic in size. A weird property of black holes is that they can "evaporate" by giving off particles of Hawking radiation. Smaller black holes evaporate faster, so tiny subatomic black holes would immediately disintegrate in a shower of other particles.

In the Mass Effect universe, the ability to manipulate the mass of objects makes it more plausible to form small but non-microscopic black holes. To have the effect seen in the game, the mass of the black hole would have to be much larger than the mass of a person. The black holes produced by Adepts would still be really nasty sources of radiation, disintegrating really quickly, but it's much more fun to send your enemies into orbit than to give them acute radiation poisoning.

It's also common for games to use black holes as entrances to "worm holes" in space/time, thus allowing faster-than-light travel. For example in Spore, you can hop from place to place in the galaxy using black holes. The problem with this is that, even if black holes were the entrance to some sort of space-time tunnel (there's no evidence that this is true, and for worm holes to be stable you would need exotic matter with negative mass), you still have the minor problem of surviving a trip through a black hole.


Final remarks

There's no doubt that, as gamers get more sophisticated, more and more effort is being poured into games to make them smarter. Often it seems like there must be a tradeoff between good gameplay and good science, but in the right context (and in the right doses), real science can be incorporated into video games, making them more believable while also inspiring innovative gameplay.

Ryan Anderson is part of the science team behind the Mars Rover "Curiosity" and Science Media Consultant at Thwacke! Consulting. For more, follow @ThwackeMontreal on Twitter.
Mass Effect

Take a Look at Mass Effect 3's Next DLCTo go with the mere announcement of new Mass Effect DLC from earlier today, a leak has turned up what looks like details - and images - of the new weapons and classes available.

The "Earth" DLC seems to contain five new N7 classes, three new weapons and a new game mode, Platinum.

(Adept) N7 Fury: Throw, Annihilation Field, Dark Channel

(Soldier) N7 Destroyer: Multi-Frag Grenade, Missile Launcher, Devastator Mode, T5-V battlesuit?

(Engineer) N7 Demolisher: Homing Grenade, Arc Grenade, Supply Pylon

(Sentinel) N7 Paladin: Snap Freeze, Incinerate, Energy Drain

(Infiltrator) N7 Shadow: Tactical Cloak, Shadow Strike, Electric Slash

(Vanguard) N7 Slayer: Phase Disruptor, Biotic Charge, Biotic Slash, has a guddam sword *is Kai Leng I'm assuming*

Fury: "Fury operatives use implants to fuel biotics and their incredible
movement speed. These operatives wind an unpredictable path on the
battlefield, moving in and out of combat before returning to unleash a
sweeping biotic attack on their unsuspecting targets."

Destroyer: "The Destroyer's T5-V Battlesuit gives these strong-but-slow
soldiers mech-like protection. Driven by eezo-assisted actuators, these
frontline troopers carry heavy weapons onto the battlefield."

Demolisher: "The Demolisher uses grenades to attack at range and to
terrorize the battlefield. Demolishers can also create a supply pylon
that stocks allies with an unending reserve of grenades and thermal

Paladin: "The Paladin carries a powerful omni-shield onto the
battlefield to block enemy fire. The Paladin also uses the shield as a
heavy-melee weapon that, when modified with incindiery or cryo upgrades,
creates a devastating combination attack."

Shadow: "Shadow infiltrators use implants to dramatically improve
agility, making them slippery combatants on the battlefield. Their
monomolecular blades are a menace from cover and close range."

Slayer: "Slayers use implants to dramatically improve mobility. Their
dizzying sword attacks can hit multiple opponents, and the Slayer's
ability to slip fire makes them hard to pin down on the battielfield."

Edit: Release date 17th July

New classes in Earth DLC confirmed by Gibbed (now with pics!) [BioWare]

Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC Take a Look at Mass Effect 3's Next DLC
Mass Effect

The Cast Of NBC's Community Are Naturals At Roleplaying Mass Effect CharactersTroy and Abed have clearly been playing with the dreamatorium for a bit too long. And now I need to see them make an episode out of this.

Community Effect Mashup: Pt. 3 [Adventures of lil Obi-Rus-Kenobi]

The Cast Of NBC's Community Are Naturals At Roleplaying Mass Effect Characters

Mass Effect

More Free Mass Effect 3 DLC Hitting Xbox Next WeekA new downloadable content pack for Mass Effect 3 will be out on July 17 for Xbox 360, Microsoft said today.

Called Mass Effect 3: Earth Multiplayer Expansion, the DLC is totally free according to a blog entry by Microsoft's Major Nelson.

This is likely the map- and weapon-packed "Earth" DLC that was leaked by a Redditor last month.

Content coming soon to the Xbox LIVE Marketplace [Major Nelson]

Mass Effect

The Extended Cut DLC for Mass Effect 3 was free, and now, so is the additional 16 minutes of music composed for its soundtrack. You can pick up the files from BioWare's website.

Mass Effect

Scientists Discover the Mass Effect! Or Is it Just the Higgs Boson? There is, to be sure, a vast gulf between science and science fiction. The former relies on provable observations about the physical world that is. It quantifies, measures, and predicts the ways that the systems that govern our universe behave. The latter is anything that anybody feels like making up, whether or not it's truly compatible with reality.

The two don't necessarily relate very often. But that doesn't mean it isn't fun to try.

This week, physicists confirmed that, after many years and much expense, they could confirm the existence of the particle that gives matter its mass. In terms of making the standard model of physics continue to make sense, the news is huge. But how does it fit with fictional models of physics? In short: how does finding mass fit in with Mass Effect?

The Real Science

The Higgs boson is a type of particle that has, until now, been theoretical. Particle physics looks at the tiniest building blocks of all things. Most of us learn about atoms being made of protons, neutrons, and electrons in high school but the actual reality is far more complicated. Particles like quarks and bosons fill in the picture.

In short, the boson is called after Peter Higgs, a British physicist who in the 1960s outlined the behavior and properties of the boson that scientists could theoretically expect one day to find. As it turns out, he was right. A major group of European scientists announced on Wednesday that they pretty much found it exactly as they'd expected. A number of excellent summaries of what the Higgs boson is and why everyone was looking for it have cropped up around the internet. There's a video explanation from our sibling site Gizmodo and a write-up from our other sibling site io9.

But perhaps the most digestible key summary, for our purposes, comes from this layman-friendly writeup in The Atlantic:

*The Higgs field is a quantum field that the Standard Model of physics predicts pervades the universe and creates drag on particles.

*The Higgs boson is a sub-atomic particle that acts as the intermediary between the Higgs field and other particles. All fields are mediated by bosons, some of which pop into and out of existence depending on the state of the field, sort of like how rain drops emerge out of a cloud when it reaches a certain point. The electromagnetic field that pervades the universe, for example, is mediated by photons. Finding the Higgs boson would confirm that the Higgs field exists, and that field has long been postulated as a way of explaining an array of other physical phenomena.

* This interaction between the field, the boson and other particles is the Higgs mechanism. The precise nature of the mechanism is still being worked out, but it is through its complex interplay of fields and bosons (Higgs and non-Higgs) that particles acquire mass.

The last statement is the key: that through the "complex interplay of fields and bosons," particles acquire mass. Which leads us to...

The Fake Science

The actual "mass effect" phenomenon is critical to the universe Mass Effect posits. It's how all of the super-futuristic technology—biotics, shields, intragalactic travel—manages to work.

The idea behind the mass effect is that through application of Element Zero (eezo), devices (like mass relays) can create mass effect fields and alter the properties and behavior of mass. According to the games' in-universe Codex, "Element zero can increase or decrease the mass of volume of space-time when subjected to an electrical current. With a positive current, mass is increased. With a negative current, mass is decreased. The stronger the current, the greater the magnitude of the dark energy mass effect."

In this case, a mass relay would be using its glowing blue eezo core to create a profound positive or negative charge on an object passing through it (like, say, the Normandy). On one end it would drastically reduce the mass of an item and send it flinging far away; on the other end, its mass would increase and the ship would, basically, reconstitute. Similarly, smaller, portable mass effect fields work to allow engineers (salarian, no doubt) to mess with local gravity for manufacturing and transportation needs. Need to keep space junk away from your planet? Go create a high-gravity mass effect field to draw it into instead.

The Result

Where we lose Mass Effect entirely is with eezo. Element Zero is, effectively, space magic. Positive and negative currents run through various materials can create rather dramatic fields and effects, but without eezo, long-distance travel isn't one of them.

But the idea that fields exist and can affect mass is, as discussion of the Higgs system indicates, not entirely outrageous. But it happens on an extraordinarily small level, deep down in the foundational building blocks of matter. And it happens in a fluid, nonstop sort of way, just to make the universe function.

We're not going to be zipping around the galaxy through ancient tuning forks anytime soon. Without a healthy dose of space magic to make the rules of spacetime and matter irrelevant, we still have to navigate it the old-fashioned, very slow way.

But hey, you never know. Maybe the prothean ruins on Mars will prove me wrong.

Mass Effect

Remember when this is what Mass Effect sounded like?

There was a time when the story had a fairly straightforward theme, using electronic and orchestral sounds to draw us into a sweeping space opera with dark tones around the edges. Back then, of course, it was a more straightforward story.

It was a theme in an even time—a nice predictable 3/4—and it moved with a melody you could hum. It was a theme you could take with you, as a Spectre and member of the Alliance Navy, to march into battle against a single, known enemy.

But as we all know by now, the story of the Mass Effect series doesn't stay simple. It twists and branches, and the reapers eventually become a threat too devastating to imagine on a scale too wide to understand. But it's still Commander Shepard's story, and it's still Mass Effect. So where does the music go, as Shep shifts from new Spectre, to would-be pawn of the Illusive Man, to humanity's—or, really, the galaxy's—last desperate hope?

The series spans between 60 and 90 hours, across three games, and pulls many very cool musical tricks during that time. But some of the simplest are also the most effective. So where does the main theme fit in over the course of it all? Here are some of my favorite highlights.

In the first game, we meet Sovereign, and we learn about the concept of indoctrination. By hanging around near (or in) a reaper, you can start to believe anything... including the ultimate futility of your own cause. Starting around 00:17, Sovereign's theme quotes a bastardized, broken version of the main theme back at us, using the first four notes to draw us in. The message? "You, too, will fall."
Of course, the first game is the only one Shepard can't get him- or herself killed off in. And it ends with Victory: a 4/4, successful, military march that again uses the first four notes of the theme to draw us in. Only this time, it ends happily.
I love what happens to the theme in Mass Effect 2. (I wrote quite a bit about it, once upon a time.) It picks up the extra beat of irregularly, from the Illusive Man, and all the bombast of the Suicide Mission. But it's still very clearly the core of Mass Effect, just reimagined for a Shepard whose entire world has changed under her feet. While she was, well, being dead.
By Mass Effect 3 everything is well and truly shot to hell. The music most closely associated with the game focuses on the reaper chord, not Alliance heroics. But references to the main theme appear at all of Shep's major landmarks. The first three notes to kick off "The View of Palaven" (which is a sad view, as the place is under attack by reapers) call back to the theme, though the rest is busy, busy battle.
The reference to the opening notes of the main theme also shows up on Tuchanka. The mission where Shepard either cures the genophage or dooms the krogan to an infertile future has lasting import. At 02:16 especially, the reference is unmistakable. But the whole clip is also uniquely krogan—and uniquely female. It's the story of krogan women especially that Shepard can rewrite.
And then there is the world's saddest piano, the one that follows Shepard around on her final adventure. Through the first two games, the piano always signified moments of particular importance to Shepard. This time, the whole galaxy's fate is personal to her. But even more personal is the companion she fights for. And this is the music that plays during their final quiet moment together on board the Normandy. It also, as first heard around 0:11, refers back to the opening notes of the main theme rather poignantly.
Of course, this big, bold statement of the theme (starting at 0:19) is what we've been waiting to hear. Go, Alliance, go! Kick some reaper ass! Yay Crucible! Yay Civilization! You can do it! *tear*
The last reference is also the saddest. "An End, Once And For All" is what it says. It plays "Leaving Earth" for us with the reapers (and their chord, and their tension) removed. And at 01:38, it plays the music of Shepard, the Alliance, and exploration one last time.
Of course, that's just half of the Mas Effect main theme. The descending eighth notes (00:59) tell another big part of the story. And then there is music for geth, for reapers, for turians... for the Presidium and the Citadel, for exploration. For love, for loss, and for everything else.

But those are stories for another day.

Mass Effect

From Skyrim to Mass Effect: Is DLC Ever Worthwhile? For today's edition of Burning Questions, we're going to try something different.

While we usually have our weekly conversation/discussion/debate/verbal melodies via online chat and then put them on Kotaku, today we're going to do everything live. We'll be hanging out in the new discussion system, chatting with one another and maybe even you guys. So feel free to participate.

Today we're going to talk about DLC. Is it good? Is it evil? Is it somewhere in between? Probably. But why? How? When? Who? Those sure seem like some... burning questions.

Note: To watch the conversation in action, just keep hitting the Refresh icon below.

Update: The live chat is over, but we'll still be hanging out in the discussion system, answering questions and chatting it up with you dudes and dudettes!

Mass Effect

This Collection of Mass Effect Prints Makes For Fancy WallpaperI'm always on the hunt for awesome new desktop and/or phone wallpaper (until recently when I settled on forever having it be of my cat). And I imagine you all find yourselves in a similar position, too.

If you fit that description and are also a Mass Effect fan, I believe I have some wallpaper suggestions for you. Go ahead. Kick back, browse through the gallery of lagota's awesome art, make your selections. As always, be sure to expand the images.

lagota [deviantART via fabiocs]

This Collection of Mass Effect Prints Makes For Fancy Wallpaper This Collection of Mass Effect Prints Makes For Fancy Wallpaper This Collection of Mass Effect Prints Makes For Fancy Wallpaper This Collection of Mass Effect Prints Makes For Fancy Wallpaper This Collection of Mass Effect Prints Makes For Fancy Wallpaper

Mass Effect

No DLC Can Ever 'Nerf' This Awesome Mass Effect Nerf Gun

This won't help you take out Reapers. And it's probably not such a good choice against Cerberus, either. At least, not if you want them to stay dead after you shoot them.

Because this? Is the best Nerf gun ever. It's Commander Shepard's favorite Nerf gun on the Citadel. It's a Nerf gun painstakingly handmade to look like it's right out of the Mass Effect series. If the Alliance could get away with Nerf guns, instead of the hot metal kind? They'd use these.

It's from Etsy designer Viktor Graves, who has a whole bunch of amazingly detailed, mostly harmless, fully functional replica weapons available. But this one is the best. Because Mass Effect.

And if foam just isn't an effective enough weapon against your nemesis, there's always the Super Soaker watergun edition. Which is pretty damn cool too.

MASS EFFECT Inspired Nerf Maverick Steampunk Scifi Video Game N7 [Etsy]