New Borderlands 2 DLCs Add a Myriad of Skins, HeadsHere's a look at the new costumization options available in Borderlands 2. Each set is available for 80 Microsoft Points or $0.99 / £0.75 / 0,99€ for the Xbox 360 and PS3/PC, respectively (separate from the Season Pass). You can find a shot of the "Madness" set below.

A Flood of New Borderlands 2 Heads and Skins Available, Deck Your Characters Out Today! [2K Games Blog]

New Borderlands 2 DLCs Add a Myriad of Skins, Heads


Science Explains Why We'll Probably Never Be Able To Respawn in Real LifeYou're running out of ammo, the last medikit you saw was three towns behind, and that nice guy shooting at you just got a sniper to help him out.

Without divine intervention and after that nice guy gets a lucky shot (and why wouldn't he?), you (or what's left of you) are probably headed to the nearest respawn point. And just like that, within the game, Pum! Your character appears out of nowhere.

Save points are a bit different. Usually, in games that allow you to save at any moment (ie: Deus Ex: Human Revolution—and I'm glad it lets us!), you just reappear in the same exact spot with the same exact gear you had.

Other games save when a big boss battle is coming up or when you choose to save (e.g. Serious Sam 3 BFE), and you just reappear on the point where you saved.

Saving a game and respawning is something that happens outside of the world of the game; the player is conscious of this, but the character is not, thus breaking the fourth wall. But there are exceptions to this rule, and Borderlands is one of them. So, how could one imagine a respawn point working?

The physics of respawning

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

In Borderlands, there are New-U stations that "store the character DNA against the possibility of accidental death or dismemberment" and can "digistruct" an entirely new body to replace the recently deceased one, a hand-wavey way to explain how the game save works.

We're going to discuss a bit of physics in this article, but thinking about an action game, being completely faithful to the laws of physics would be a bit boring. For example, if you die, you die, and that's the end, as long as our knowledge of the laws of physics goes!

New-U stations save the game when the character walks within range of it. We will get into the physics of the matter (if you pardon the pun), but just the idea of explaining why a character can reappear is interesting. There's even a tunnel when you're being brought back and an associated cost of 7% of your character's funds! It can be a lot from the player's perspective, but that's just pocket change considering you are actually "reconstructing" a character.

In a nutshell, New-U stations use solid light to digistruct a person, weapons from holsters, even cars. Therefore, the DNA explanation mentioned above is not sufficient. When you are reconstructed from a New-U station, the character returns with all its weapons, ammunition, clothes, etc. So if the New-U station stored only DNA, it would be a bit hard to reconstruct stuff that doesn't have DNA to begin with—think back-in-time-terminator-naked style. There's also the use of another term, "solid light," that is an actual scientific term, but again applied in a science fiction way, in a sense of light transforming into matter.

So how would a more physics-based "reconstruction" work?

Making a "new you" (who's exactly like your "old you")

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

Lawrence Krauss (a fantastic physicist and writer) did some calculations on a similar problem, the transporter from Star Trek. There are other issues that Krauss discusses, but the physics of acquiring the data from the object and reconstructing it would be similar. Krauss even goes into a deeper philosophical question: are human beings only the sum of their atoms? Is there something else that makes us human, besides matter? It's a very interesting question, but one that we will not delve into. So we're going to stick with physics questions: how much information would one need to store in order to recreate a human being? How do you acquire this information? And how much energy is needed to do so?

The average human body is composed of 1x1028 atoms.

To be able to reconstruct it from a stored pattern, first this pattern must be stored, of course. But how would one go about doing that? The scanner would have to acquire the position and momentum of all atoms, without displacing them. It would need to determine the type of atom that you're scanning, too. It also would have to do it very quickly, taking into account that the character probably wouldn't be standing still. And here quantum mechanics shows to start spoiling the fun, with its pesky Heisenberg principle.

The Heisenberg principle states that, independent of the measure apparatus or future technologies, there are certain combinations of measures that are impossible to be made with arbitrary precision.

For example, it is possible to determine very precisely the position of a subatomic particle—like an electron—but not the momentum at the same time, and vice versa, or the state that the particle is, but not how long the particle will stay in that state.

So for our "scanner beam" to be able to selectively "lock" on a particular atom (which would be a feat on its own) and acquire its information, would disturb that same atom from its present state, somewhat irreversibly. It gets even worse, since, if we need to increase the precision of the beam to get a higher resolution, more energy would be needed, and the more that poor atom would be disturbed. And all that would be done within seconds!

To keep going, let's now assume that this scanner beam works. How much space would be needed to store all this information?

But where would we store all this?

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

We would need to store not only the position and velocity of each atom, but also its energetic state, whether it's making a bond with other atoms, the vibrational and rotational states, etc.

In physics, each of these pieces of information is called a degree of freedom, and a system is determined if all the degrees of freedom can be defined.

Let's say that we can store all the degrees of freedom of all the atoms. Let's take an educated guess and say that all the degrees of freedom of one atom can be described by 5kB. While we're at it, let's also take into account the weapons and stuff that you carry on that giant backpack, and say that we need to store 1x1029 atoms.

That would give us 5 x 1029 kilobytes, or 50000 yottabytes of information to be stored (and retrieved!) in a few seconds.

Given the world's current supply of hard drives, we couldn't get a single yottabyte. There are some recent calculations (using the Bekenstein limit) that estimate the information needed to describe a human being to be around 1x1044 bytes, considering the maximum amount of information given using a finite amount of energy in a finite region of space, which happens to be larger than our previous estimate.

You died! What happens now?

You died, fini, caput, so the New-U station needs to reconstruct you. We got a nice blueprint of 50000 yottabytes with all your information.

First problem: we need the atoms! It shouldn't be a big deal for the more common ones, like oxygen (65%, in mass), carbon (18% in mass) and hydrogen (10% in mass).

Things start to get a bit more problematic with the rare earth ones, even uranium and beryllium, so each New-U station would have to have an  "atoms stock" to be able to reconstruct a character. And remember, there's also all the weapons… It seems that the weapons are recreated from scratch when the character is recreated, but dematerialized to "hard light" when the character is not using it.

But wait! It gets even more complicated…

So far, we only dealt with atomic level problems, considering that only saving the atoms themselves and not its constituents is necessary.

Each atom is composed by some number of nucleons (protons and neutrons) and electrons, and a lot of empty space. Really, a lot: more than 99% of the mass of the atom is at its center, where the nucleons are, but the size of the nucleous is 10000 smaller that the atom itself.

What prevents things falling through other things is the electric field, or the repulsion of the electric field by equal charges. Chemical bonds are formed to minimize the energy, but getting the atoms together can be a bit tricky, exactly because of that electric repulsion.

There are also reactions that need energy to start and keep going, and others liberate energy when the chemical bonds are formed from the free elements. How much energy? We will have to simplify greatly here: some chemical reactions liberate energy, while others absorb it, so it's not only a problem of putting everything together, but also putting or removing the right amount of energy in the right order.

After seeing the enormous amount of information that would need to be scanned and stored, the energy and materials that would be needed and with all the difficulties that physics presents us, it's not like we would see a New-U on the corner anytime soon (or ever), but the possibilities for understanding the science behind the possible processes is very interesting. There are some fundamental physical barriers and others that are more technological. But nonetheless, not breaking the fourth wall is awesome and talking physics about a game is always awesome.

And all this for only 7% of your funds!

Ivan is a computational physicist and postdoctoral fellow at Laval University and science media consultant for Thwacke Consulting. For more follow Thwacke on Twitter and Facebook!

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life

Zerg Rushes, Suicide Attacks and Splash Damage: How Real Insect Warfare is Similar to StarCraft

Editor's note: Our guy at Thwacke, a Canadian outfit that advises game developers in all things science, writes to us and says he's got an expert who can explain how the Zerg in StarCraft have a whole lot in common with real insects. More »

Rock, Paper, Shotgun - contact@rockpapershotgun.com (Alec Meer)

Some interviews with prominent figures, as in Polygon’s widely-circulated one with BioShock: Infinite lead designer Ken Levine, are held on top of skyscraping Californian hotels. While it’s not something I’ve experienced myself, I can entirely appreciate why this often leads their eventual write-ups to be somewhat defined by awe, be it overt or subtle: a famous figure is encountered in a dramatic setting, the trappings of aspirational luxury around them. Thus, they are inevitably presupposed to be superhumans of a sort, with achievements and a lifestyle far beyond those of mere mortals such as the humble interviewer. This is the tale. Notoriously, this week also saw the outermost extreme of this, in Esquire’s absurd interview with/clearly lovelorn ode to the attractive but otherwise apparently unexceptional actor Megan Fox.

I can’t ever imagine going as far as Esquire, and I’d hope someone would throw me into the nearest sea if I did, but I do understand why it can happen. The scene is set in such a way that the interviewer is encountering, if not a god, then at least royalty. Even on a more moderate level, I have never conducted an interview in a Californian luxury hotel’s roofgarden, and my own interview with Ken Levine last month was no different, but I am nonetheless left thinking about the narrative created in that half hour. What tale could I now tell from just a talk with a guy in a room? Initially, I thought it impossible, or at least redundant, to spin a story out of a short, slightly awkward conversation in a dark little room somewhere in London: this is why Q&As are the standard interview format here. Let’s try, though. I want to tell you about what happened in that interview, and how it felt to me, as well as sharing Ken Levine’s comments about BioShock: Infinite’s characters, pacing and mysteries with you. (more…)


Beware: spoilers for hidden secrets in Borderlands 2's latest DLCSir Hammerlock's Big Game Hunt—follow. Also STDs might follow, so, you know, beware that, too.

Now that we got that out of the way, prepare yourself for The Clap, as presented to you by GameFront, the finders of all things hidden.

I need one of these Claptraps guarding the outside of my future mansion. Someone see to this.

PC Gamer
Borderlands 2 Scarlett pirate

The latest adventure for Borderlands 2's Vault Hunters involves knocking the loot-stuffing out of Pandora's deadliest creatures in the Sir Hammerlock DLC, but why stop the madness there? Gearbox has been talking about a level cap increase beyond 50 for some time, and speaking to Official PlayStation Magazine UK, Producer James Lopez said we'll see more levels sometime during the year's first quarter which ends in March.

As Lopez explained, picking the correct moment to make everyone more powerful came from poring over player stats tracked by Borderlands 2's SHiFT system. "SHiFT allows us to see a lot more about the way players are playing the game and see what they’re doing. We wanted to give people enough time to get at least one level 50 and then see from there. We also didn’t want to wait so long that people were no longer interested or felt like it wasn’t coming."

It's unclear how we'll get the added levels—perhaps included in a future DLC pack or as a separate patch. Heck, with how wacky things get on Pandora, we wouldn't be surprised if Dr. Zed just randomly decided to shoot a strength-boosting syringe into our eyeball one day.

Lopez previously told Polygon the issue of ability balance and power-creep weighed heavily on Gearbox's decisions for adjusting character levels. "We try to find ways to balance it out and we also need to adjust the enemies so they are still challenging at the higher levels. It's one of those funny things where people assume that whenever they hit level 50 they're going to steamroll through everything."
Shacknews - Steve Watts

Civilization V may be getting another large chunk of content. A listing for an expansion titled "One World" has been spotted on a database, fueling rumors of more content to come for the world culture simulator.

The executable file listing was spotted on the Steam Apps Database, and then spotted by users on the 2K forums (via Joystiq). This is far from a solid confirmation, especially as Firaxis hasn't mentioned any upcoming content, but it does give eager world-conquerors reason to hope for some more variation coming to the game--as if it didn't have enough already. 2K has responded with the usual "we do not comment on rumors or speculation" line.

PC Gamer
Civilization 5

Civilization V might be getting a second expansion at some point in the future. According to the Steam Apps Database - a website that trawls Steam's huge library - an entry exists for an expansion called "One World". This was spotted by a user of the 2K forums, who was presumably inspired by the addition of spies in Civ 5's last expansion, Gods & Kings.

While potentially exciting news for Civ fans, it's worth remembering that the Steam database isn't an exact science, and a content listing isn't a guarantee of release. Still, more Civ 5 content is hardly outside the realm of possibility. While Gods & Kings had some great additions, it wasn't an all-changing shift in how the game played out.

One World doesn't give many hints as to the possible direction of an expansion. Civ fans are speculating that it may refer to colonies, corporations, or enhanced economy and diplomacy options. Let's be honest though, at this point they're just throwing their wishlist at the wall and hoping that something sticks.

2K have responded to GameSpy's enquiries with the stock "we do not comment on rumors or speculation" line.

Thanks, Joystiq.
Rock, Paper, Shotgun - contact@rockpapershotgun.com (Alec Meer)

In this concluding part (the first one is here), we discuss boardgame influences, commercial success, what XCOM might mean for the future of strategy, the need for realism within science-fiction, and why XCOM wound up rather buggy.> (more…)


Find Out if Your PC Can Run BioShock Infinite (And Has Room For It!)Here are the minimum and recommended specs for running BioShock Infinite PC. We can't say for sure whether you should run the game on PC, as opposed to Xbox 360 or PS3. But, judging by how good the first 4 1/2 hours of the game are, we recommend your run it on something.

These specs are from Infinite studio Irrational Games' official site:


OS: Windows Vista Service Pack 2 32-bit
Processor: Intel Core 2 DUO 2.4 GHz / AMD Athlon X2 2.7 GHz
Memory: 2 GB
Hard Drive: 20 GB free
Video Card: DirectX10 Compatible ATI Radeon HD 3870 / NVIDIA 8800 GT / Intel HD 3000 Integrated Graphics
Video Card Memory: 512 MB
Sound Card: DirectX Compatible


OS: Windows 7 Service Pack 1 64-bit
Processor: Quad Core Processor
Memory: 4 GB
Hard Drive: 30 GB free
Video Card: DirectX11 Compatible, AMD Radeon HD 6950 / NVIDIA GeForce GTX 560
Video Card Memory: 1024 MB
Sound Card: DirectX Compatible

If you want to know about control options and other PC options, read the full post.

PC Specifications for BioShock Infinite Announced! [Irrational Games]

Rock, Paper, Shotgun - contact@rockpapershotgun.com (Alec Meer)

'Tell us everything, mutie!'

With Firaxis’ de-hyphenated, largely very well-received remake of the legendary, incomparable, enormous-haircutted X-COM now out there saving the Earth from the worst scum of the universe for several months, now seems the time to sit down with its enthusiastic main man Jake Solomon. What went right, what went wrong and what comes next? As per recent tradition, we had a very long chat.

Covered in this first part – the base, the skills, the missing element of surprise and what they’ve learned if they ever do this again. Edited out to spare you the horror: his Punch & Judy-style impersonation of an Englishman.> (more…)