PC Gamer
Borderlands 2


The off-the-wall Borderlands games wouldn't feel out of place as part of some alternate-reality, sadistic, Saturday-morning cartoon lineup, but both Gearbox and 2K want to make that scenario a reality. Partnering up with the Academy of Art University, the companies are launching a Borderlands Cooperative to invite the school's animation students to storyboard and produce an animated Borderlands short film for release later this year.

Teams of students will submit story ideas for the consideration of a judge panel made up by 2K, Gearbox, and university faculty. The winning group gets to work on the film as part of an internship at 2K, so it isn't quite the "get cracking, crowdsourced content slaves" scenario that I initially thought.

It'll be interesting to see what zany plot the students will think up in the already zany Borderlands universe—perhaps a Mr. Bean-style comedic adventure entitled "Salvador goes out for a haircut," except with lots of screaming Psychos instead of a befuddled Englishman. You're welcome, students.
Shacknews - John Keefer

Before Gearbox Software came up the look and personalities of Borderlands characters Roland, Mordecai, and Lilith, they devised the basic archetype of each class, with each originally represented in art as a blockhead, a conehead and a spherehead.

Borderlands franchise director Matt Armstrong and lead character designer Jonathan Hemingway were at SXSW offering a behind the scenes look at the early stages of how the in-game team came together. The designers knew they wanted a Doom-style shooter guy, a stealthy Metal Gear-type expert, and a James Bond-style gadget killer. The rough concept art for each class was represented by a sketch that had a 3D shape as a head. After some thought, they realized a play-style was missing, and Brick was eventually added as a tank-type class.

The duo also detailed the original gimmicky UI interface for the skill trees, including Brick's tree involving a series of beakers and IV bags meant to reflect his drug-induced roid-rage abilities. Those were eventually scraped, however, in favor of the three-skill-tree system.

To see more of Borderlands' design process, see the slides over at Joystiq

Kotaku

At South By Southwest in Austin, Gearbox debuted a teaser trailer that hints at the addition of a new character to Borderlands 2. The character isn't fully shown, but looks to be some sort of melee-focused badass.


The video above comes via Polygon, who are on the ground at SXSW.


"A new vault hunter is coming," the teaser video promises. What do you think? Think it'll be a return of Brick-style brawling? I'd be in, but then again, I've barely even managed to mess around with the last downloadable character, the Mechromancer.


Kotaku

Kneel Before This Massive Tower Of Borderlands 2 BoxesWhen the games have been sold, and the swag remains: What do you do? What does a man do with 180 promotional boxes for Borderlands 2?


He stacks them, apparently. This image set, uploaded to imgur by bitterguy a week ago, was tweeted at Gearbox's Randy Pitchford this morning. The imgur description: "What to do with 180 leftover boxes in an office building with a high roof."


An ambitious recycling program, to be sure. It kinda reminds me of the Sears Tower:


Kneel Before This Massive Tower Of Borderlands 2 Boxes


Kneel Before This Massive Tower Of Borderlands 2 Boxes


Kneel Before This Massive Tower Of Borderlands 2 Boxes


Kotaku

When making a mobile spin-off of a major console/PC game, one neat thing to include would be some equivalent of the most popular features of the franchise proper. There were no gun loot drops in Borderlands Legends for the iPhone and iPad. Now there are.


Part strategy, part shooter and part action RPG, Borderlands Legends' big update adds the ability to loot random weapons from fallen foes instead of having to purchase them from a vendor between missions. The rest of the updates are just icing on the cake, and the $.99 sale price that's kicked in to celebrate the update is a bunch of lovely ripe strawberries sliced in half and arranged in an appealing pattern on top.


Technically it's been $.99 on sale before, but you've never gotten quite this much for your money.


Borderlands Legends — $.99 [iTunes]


Kotaku

Developer Who Called Borderlands Character Racist Is Now Out Of A Job [UPDATE] This weekend, we reported that some players took umbrage with Tiny Tina, a character from Borderlands 2 and how she used "black lingo." Gearbox was receptive to these players, listening to their concerns and even offering to change the character in future updates should they be convinced that Tina's dialogue was racist.


Mike Sacco, a creative developer with the World of Warcraft trading card game, was one of the players involved in the dispute. Today, he tweeted that he no longer works at Cryptozoic, where he was previously a contractor.


The reasons why are not clear.







I reached out to Sacco for comment, but he said he cannot legally say anything on the matter. I've also contacted Cryptozoic, and will update this story if I hear back from them.


UPDATE: Cryptozoic responds as follows:


To clarify, Mike Sacco was never an employee of Cryptozoic Entertainment. He was a contractor.


We asked him not represent himself as an employee of Cryptozoic. After the message was delivered, Mike quit. We like Mike and we are as surprised by his reaction as you are.


UPDATE 2: Mike's original tweet has been deleted, though you can still see what he said. He offers the following reason for the deletion:




UPDATE 3
: Sacco on his contract:

Image Credit: The Crimson Hammer


Kotaku

Today, an argument broke out on Twitter between Anthony Burch, lead writer on Borderlands 2, and a few players who think that Tiny Tina is a racist character.


The issue, as some folks saw it, was that Tiny Tina appropriated African American lingo. See above video, which showcases Tiny Tina dialogue, if you want reference.


The argument on Twitter, which ends with Burch saying he'll consider changing her, is as follows—note that this is a mix of developers, game journalists, and random fans:























Whether or not a change in Tina's character will actually occur is not clear, though I suspect many fans would be upset if she was altered: she is frequently cited as a favorite character.


UPDATE: Some are even defending Tina, as not all players believe she is racist:







Though this is but a small sampling of the response Burch is getting, which you can view here.


I reached out to Burch and have yet to hear back.


Kotaku

Today, an argument broke out on Twitter between Anthony Burch, lead writer on Borderlands 2, and a few players who think that Tiny Tina is a racist character.


The issue, as some folks saw it, was that Tiny Tina appropriated African American lingo. See above video, which showcases Tiny Tina dialogue, if you want reference.


The argument on Twitter, which ends with Burch saying he'll consider changing her, is as follows—note that this is a mix of developers, game journalists, and random fans:























Matt Charles is a producer on Borderlands 2.


Whether or not a change in Tina's character will actually occur is not clear, though I suspect many fans would be upset if she was altered: she is frequently cited as a favorite character.


UPDATE: Some are even defending Tina, as not all players believe she is racist (including Gearbox president, Randy Pitchford):







Though this is but a small sampling of the response Burch is getting, which you can view here.


I reached out to Burch and have yet to hear back.


UPDATE 2: Burch responds and clarifies:


Kotaku

New Borderlands 2 DLCs Add a Myriad of Skins, HeadsHere's a look at the new costumization options available in Borderlands 2. Each set is available for 80 Microsoft Points or $0.99 / £0.75 / 0,99€ for the Xbox 360 and PS3/PC, respectively (separate from the Season Pass). You can find a shot of the "Madness" set below.


A Flood of New Borderlands 2 Heads and Skins Available, Deck Your Characters Out Today! [2K Games Blog]


New Borderlands 2 DLCs Add a Myriad of Skins, Heads


Kotaku

Science Explains Why We'll Probably Never Be Able To Respawn in Real LifeYou're running out of ammo, the last medikit you saw was three towns behind, and that nice guy shooting at you just got a sniper to help him out.


Without divine intervention and after that nice guy gets a lucky shot (and why wouldn't he?), you (or what's left of you) are probably headed to the nearest respawn point. And just like that, within the game, Pum! Your character appears out of nowhere.


Save points are a bit different. Usually, in games that allow you to save at any moment (ie: Deus Ex: Human Revolution—and I'm glad it lets us!), you just reappear in the same exact spot with the same exact gear you had.


Other games save when a big boss battle is coming up or when you choose to save (e.g. Serious Sam 3 BFE), and you just reappear on the point where you saved.


Saving a game and respawning is something that happens outside of the world of the game; the player is conscious of this, but the character is not, thus breaking the fourth wall. But there are exceptions to this rule, and Borderlands is one of them. So, how could one imagine a respawn point working?


The physics of respawning

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life


In Borderlands, there are New-U stations that "store the character DNA against the possibility of accidental death or dismemberment" and can "digistruct" an entirely new body to replace the recently deceased one, a hand-wavey way to explain how the game save works.


We're going to discuss a bit of physics in this article, but thinking about an action game, being completely faithful to the laws of physics would be a bit boring. For example, if you die, you die, and that's the end, as long as our knowledge of the laws of physics goes!


New-U stations save the game when the character walks within range of it. We will get into the physics of the matter (if you pardon the pun), but just the idea of explaining why a character can reappear is interesting. There's even a tunnel when you're being brought back and an associated cost of 7% of your character's funds! It can be a lot from the player's perspective, but that's just pocket change considering you are actually "reconstructing" a character.


In a nutshell, New-U stations use solid light to digistruct a person, weapons from holsters, even cars. Therefore, the DNA explanation mentioned above is not sufficient. When you are reconstructed from a New-U station, the character returns with all its weapons, ammunition, clothes, etc. So if the New-U station stored only DNA, it would be a bit hard to reconstruct stuff that doesn't have DNA to begin with—think back-in-time-terminator-naked style. There's also the use of another term, "solid light," that is an actual scientific term, but again applied in a science fiction way, in a sense of light transforming into matter.


So how would a more physics-based "reconstruction" work?


Making a "new you" (who's exactly like your "old you")

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life


Lawrence Krauss (a fantastic physicist and writer) did some calculations on a similar problem, the transporter from Star Trek. There are other issues that Krauss discusses, but the physics of acquiring the data from the object and reconstructing it would be similar. Krauss even goes into a deeper philosophical question: are human beings only the sum of their atoms? Is there something else that makes us human, besides matter? It's a very interesting question, but one that we will not delve into. So we're going to stick with physics questions: how much information would one need to store in order to recreate a human being? How do you acquire this information? And how much energy is needed to do so?


The average human body is composed of 1x1028 atoms.


To be able to reconstruct it from a stored pattern, first this pattern must be stored, of course. But how would one go about doing that? The scanner would have to acquire the position and momentum of all atoms, without displacing them. It would need to determine the type of atom that you're scanning, too. It also would have to do it very quickly, taking into account that the character probably wouldn't be standing still. And here quantum mechanics shows to start spoiling the fun, with its pesky Heisenberg principle.


The Heisenberg principle states that, independent of the measure apparatus or future technologies, there are certain combinations of measures that are impossible to be made with arbitrary precision.


For example, it is possible to determine very precisely the position of a subatomic particle—like an electron—but not the momentum at the same time, and vice versa, or the state that the particle is, but not how long the particle will stay in that state.


So for our "scanner beam" to be able to selectively "lock" on a particular atom (which would be a feat on its own) and acquire its information, would disturb that same atom from its present state, somewhat irreversibly. It gets even worse, since, if we need to increase the precision of the beam to get a higher resolution, more energy would be needed, and the more that poor atom would be disturbed. And all that would be done within seconds!


To keep going, let's now assume that this scanner beam works. How much space would be needed to store all this information?


But where would we store all this?

Science Explains Why We'll Probably Never Be Able To Respawn in Real Life


We would need to store not only the position and velocity of each atom, but also its energetic state, whether it's making a bond with other atoms, the vibrational and rotational states, etc.


In physics, each of these pieces of information is called a degree of freedom, and a system is determined if all the degrees of freedom can be defined.


Let's say that we can store all the degrees of freedom of all the atoms. Let's take an educated guess and say that all the degrees of freedom of one atom can be described by 5kB. While we're at it, let's also take into account the weapons and stuff that you carry on that giant backpack, and say that we need to store 1x1029 atoms.


That would give us 5 x 1029 kilobytes, or 50000 yottabytes of information to be stored (and retrieved!) in a few seconds.


Given the world's current supply of hard drives, we couldn't get a single yottabyte. There are some recent calculations (using the Bekenstein limit) that estimate the information needed to describe a human being to be around 1x1044 bytes, considering the maximum amount of information given using a finite amount of energy in a finite region of space, which happens to be larger than our previous estimate.


You died! What happens now?

You died, fini, caput, so the New-U station needs to reconstruct you. We got a nice blueprint of 50000 yottabytes with all your information.


First problem: we need the atoms! It shouldn't be a big deal for the more common ones, like oxygen (65%, in mass), carbon (18% in mass) and hydrogen (10% in mass).


Things start to get a bit more problematic with the rare earth ones, even uranium and beryllium, so each New-U station would have to have an  "atoms stock" to be able to reconstruct a character. And remember, there's also all the weapons… It seems that the weapons are recreated from scratch when the character is recreated, but dematerialized to "hard light" when the character is not using it.


But wait! It gets even more complicated…

So far, we only dealt with atomic level problems, considering that only saving the atoms themselves and not its constituents is necessary.


Each atom is composed by some number of nucleons (protons and neutrons) and electrons, and a lot of empty space. Really, a lot: more than 99% of the mass of the atom is at its center, where the nucleons are, but the size of the nucleous is 10000 smaller that the atom itself.


What prevents things falling through other things is the electric field, or the repulsion of the electric field by equal charges. Chemical bonds are formed to minimize the energy, but getting the atoms together can be a bit tricky, exactly because of that electric repulsion.


There are also reactions that need energy to start and keep going, and others liberate energy when the chemical bonds are formed from the free elements. How much energy? We will have to simplify greatly here: some chemical reactions liberate energy, while others absorb it, so it's not only a problem of putting everything together, but also putting or removing the right amount of energy in the right order.


After seeing the enormous amount of information that would need to be scanned and stored, the energy and materials that would be needed and with all the difficulties that physics presents us, it's not like we would see a New-U on the corner anytime soon (or ever), but the possibilities for understanding the science behind the possible processes is very interesting. There are some fundamental physical barriers and others that are more technological. But nonetheless, not breaking the fourth wall is awesome and talking physics about a game is always awesome.


And all this for only 7% of your funds!


Ivan is a computational physicist and postdoctoral fellow at Laval University and science media consultant for Thwacke Consulting. For more follow Thwacke on Twitter and Facebook!


Science Explains Why We'll Probably Never Be Able To Respawn in Real Life


Zerg Rushes, Suicide Attacks and Splash Damage: How Real Insect Warfare is Similar to StarCraft

Editor's note: Our guy at Thwacke, a Canadian outfit that advises game developers in all things science, writes to us and says he's got an expert who can explain how the Zerg in StarCraft have a whole lot in common with real insects. More »



...